Explaining GitHub Actions Failures with Large Language Models: Challenges, Insights, and Limitations
GitHub Actions (GA) has become the de facto tool that developers use to automate software workflows, seamlessly building, testing, and deploying code. Yet when GA fails, it disrupts development, causing delays and driving up costs. Diagnosing failures becomes especially challenging because error logs are often long, complex and unstructured. Given these difficulties, this study explores the potential of large language models (LLMs) to generate correct, clear, concise, and actionable contextual descriptions (or summaries) for GA failures, focusing on developers’ perceptions of their feasibility and usefulness. Our results show that over 80% of developers rated LLM explanations positively in terms of correctness for simpler/small logs. Overall, our findings suggest that LLMs can feasibly assist developers in understanding common GA errors, thus, potentially reducing manual analysis. However, we also found that improved reasoning abilities are needed to support more complex CI/CD scenarios. For instance, less experienced developers tend to be more positive on the described context, while seasoned developers prefer concise summaries. In summary, our work offers key insights for researchers enhancing LLM reasoning, particularly in adapting explanations to user expertise.
Sun 27 AprDisplayed time zone: Eastern Time (US & Canada) change
16:00 - 17:30 | Summarisation, Natural Language GenerationResearch Track / Early Research Achievements (ERA) / Replications and Negative Results (RENE) at 205 Chair(s): Oscar Chaparro William & Mary, Coen De Roover Vrije Universiteit Brussel, Gema Rodríguez-Pérez Department of Computer Science, Mathematics, Physics and Statistics, University of British Columbia, Okanagan Campus | ||
16:00 10mTalk | Optimizing Datasets for Code Summarization: Is Code-Comment Coherence Enough? Research Track Antonio Vitale Politecnico di Torino, University of Molise, Antonio Mastropaolo William and Mary, USA, Rocco Oliveto University of Molise, Massimiliano Di Penta University of Sannio, Italy, Simone Scalabrino University of Molise | ||
16:10 10mTalk | CMDeSum: A Cross-Modal Deliberation Network for Code Summarization Research Track Zhifang Liao Central South University, Xiaoyu Liu Central South University, Peng Lan School of Computer Science and Engineering, Central South University, Changsha, China, Song Yu Central South University, Pei Liu Monash University | ||
16:20 10mTalk | CLCoSum: Curriculum Learning-based Code Summarization for Code Language Models Research Track Hongkui He South China University of Technology, Jiexin Wang South China University of Technology, Liuwen Cao South China University of Technology, Yi Cai School of Software Engineering, South China University of Technology, Guangzhou, China | ||
16:30 10mTalk | DLCoG: A Novel Framework for Dual-Level Code Comment Generation based on Semantic Segmentation and In-Context Learning Research Track Zhang Zhiyang , Haiyang Yang School of Computer Science and Engineering, Central South University, Qingyang Yan Central South University, Hao Yan Central South University, Wei-Huan Min Central South University, Zhao Wei Tencent, Li Kuang Central South University, Yingjie Xia Hangzhou Dianzi University | ||
16:40 10mTalk | Explaining GitHub Actions Failures with Large Language Models: Challenges, Insights, and Limitations Research Track Pablo Valenzuela-Toledo University of Bern, Universidad de La Frontera, Chuyue Wu University of Bern, Sandro Hernández University of Bern, Alexander Boll University of Bern, Roman Machacek University of Bern, Sebastiano Panichella University of Bern, Timo Kehrer University of Bern | ||
16:50 10mTalk | Large Language Models are Qualified Benchmark Builders: Rebuilding Pre-Training Datasets for Advancing Code Intelligence Tasks Research Track Kang Yang National University of Defense Technology, Xinjun Mao National University of Defense Technology, Shangwen Wang National University of Defense Technology, Yanlin Wang Sun Yat-sen University, Tanghaoran Zhang National University of Defense Technology, Yihao Qin National University of Defense Technology, Bo Lin National University of Defense Technology, Zhang Zhang Key Laboratory of Software Engineering for Complex Systems, National University of Defense Technology, Yao Lu National University of Defense Technology, Kamal Al-Sabahi College of Banking and Financial Studies Pre-print | ||
17:00 10mTalk | Extracting Formal Specifications from Documents Using LLMs for Test Automation Research Track Hui Li Xiamen University, Zhen Dong Fudan University, Siao Wang Fudan University, Hui Zhang Fudan University, Liwei Shen Fudan University, Xin Peng Fudan University, Dongdong She HKUST (The Hong Kong University of Science and Technology) | ||
17:10 6mTalk | Using Large Language Models to Generate Concise and Understandable Test Case Summaries Early Research Achievements (ERA) Natanael Djajadi Delft University of Technology, Amirhossein Deljouyi Delft University of Technology, Andy Zaidman TU Delft Pre-print | ||
17:16 6mTalk | Towards Generating the Rationale for Code Changes Replications and Negative Results (RENE) Francesco Casillo Università di Salerno, Antonio Mastropaolo William and Mary, USA, Gabriele Bavota Software Institute @ Università della Svizzera Italiana, Vincenzo Deufemia University of Salerno, Carmine Gravino University of Salerno | ||
17:22 8mTalk | Session's Discussion: "Summarisation, Natural Language Generation" Research Track |