ASE 2023
Mon 11 - Fri 15 September 2023 Kirchberg, Luxembourg
Tue 12 Sep 2023 10:42 - 10:54 at Room C - Testing AI Systems 1 Chair(s): Leonardo Mariani

Software testing is an important part of the development cycle, yet it requires specialized expertise and substantial developer effort to adequately test software. The recent discoveries of the capabilities of large language models (LLMs) suggest that they can be used as automated testing assistants, and thus provide helpful information and even drive the testing process. To highlight the potential of this technology, we present a taxonomy of LLM-based testing agents based on their level of autonomy, and describe how a greater level of autonomy can benefit developers in practice. An example use of LLMs as a testing assistant is provided to demonstrate how a conversational framework for testing can help developers. This also highlights how the often criticized hallucination of LLMs can be beneficial while testing. We identify other tangible benefits that LLM-driven testing agents can bestow, and also discuss some potential limitations.

slides (10.42 Shin Yoo.pdf)18.80MiB

Tue 12 Sep

Displayed time zone: Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna change

10:30 - 12:00
Testing AI Systems 1NIER Track / Research Papers at Room C
Chair(s): Leonardo Mariani University of Milano-Bicocca
10:30
12m
Talk
Nuances are the Key: Unlocking ChatGPT to Find Failure-Inducing Tests with Differential Prompting
Research Papers
Li Tsz On The Hong Kong University of Science and Technology, Wenxi Zong Northeastern University, Yibo Wang Northeastern University, Haoye Tian University of Luxembourg, Ying Wang Northeastern University, Shing-Chi Cheung Hong Kong University of Science and Technology, Jeffrey Kramer Imperial College London
Pre-print
10:42
12m
Talk
SOCRATEST- Towards Autonomous Testing Agents via Conversational Large Language Models
NIER Track
Robert Feldt Chalmers University of Technology, Sweden, Sungmin Kang KAIST, Juyeon Yoon Korea Advanced Institute of Science and Technology, Shin Yoo KAIST
Pre-print File Attached
10:54
12m
Research paper
Semantic Data Augmentation for Deep Learning Testing using Generative AI
NIER Track
sondess missaoui University of York, Simos Gerasimou University of York, Nicholas Matragkas Université Paris-Saclay, CEA, List.
File Attached
11:06
12m
Talk
Robin: A Novel Method to Produce Robust Interpreters for Deep Learning-Based Code Classifiers
Research Papers
Zhen Li Huazhong University of Science and Technology, Ruqian Zhang Huazhong University of Science and Technology, Deqing Zou Huazhong University of Science and Technology, Ning Wang Huazhong University of Science and Technology, Yating Li Huazhong University of Science and Technology, Shouhuai Xu University of Colorado Colorado Springs, Chen Chen University of Central Florida, Hai Jin Huazhong University of Science and Technology, Yating Li Huazhong University of Science and Technology
Pre-print
11:18
12m
Talk
The Devil is in the Tails: How Long-Tailed Code Distributions Impact Large Language Models
Research Papers
Xin Zhou Singapore Management University, Singapore, Kisub Kim Singapore Management University, Singapore, Bowen Xu North Carolina State University, Jiakun Liu Singapore Management University, DongGyun Han Royal Holloway, University of London, David Lo Singapore Management University
Pre-print
11:30
12m
Talk
CertPri: Certifiable Prioritization for Deep Neural Networks via Movement Cost in Feature SpaceRecorded talk
Research Papers
haibin zheng Zhejiang University of Technology, Jinyin Chen College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China, Haibo Jin Zhejiang University of Techonology
Pre-print Media Attached