Argus: Resilience-Oriented Safety Assurance Framework for End-to-End ADSs
This program is tentative and subject to change.
End-to-end autonomous driving systems (ADSs), with their strong capabilities in environmental perception and generalizable driving decisions, are attracting growing attention from both academia and industry. However, once deployed on public roads, ADSs are inevitably exposed to diverse driving hazards that may compromise safety and degrade system performance. This raises a strong demand for resilience of ADSs, particularly the capability to continuously monitor driving hazards and adaptively respond to potential safety violations, which is crucial for maintaining robust driving behaviors in complex driving scenarios.
To bridge this gap, we propose a resilience-oriented runtime framework, named Argus, to mitigate the driving hazards, thus preventing potential safety violations and improving the driving performance of an ADS. Argus continuously monitors the trajectories generated by the ADS for potential hazards and, whenever the EGO vehicle is deemed unsafe, seamlessly takes control via a hazard mitigator. We integrate Argus with three state-of-the-art end-to-end ADSs, i.e., TCP, UniAD and VAD. Our evaluation has demonstrated that Argus effectively and efficiently enhances the resilience of ADSs, improving the driving score of ADSs by 150.30% on average, and preventing 64.38% of the violations, with little additional time overhead.
This program is tentative and subject to change.
Mon 17 NovDisplayed time zone: Seoul change
11:00 - 12:30 | |||
11:00 10mTalk | ADPerf: Investigating and Testing Performance in Autonomous Driving Systems Research Papers Tri Minh-Triet Pham Concordia University, Diego Elias Costa Concordia University, Canada, Weiyi Shang University of Waterloo, Jinqiu Yang Concordia University | ||
11:10 10mTalk | VRTestSniffer: Test Smell Detector for Virtual Reality (VR) Software Projects Research Papers Faraz Gurramkonda University of Michigan-Dearborn, Avishak Chakroborty University of Michigan-Dearborn, Bruce Maxim University of Michigan - Dearborn, Mohamed Wiem Mkaouer University of Michigan - Flint, Foyzul Hassan University of Michigan at Dearborn | ||
11:20 10mTalk | A Multi-Modality Evaluation of the Reality Gap in Autonomous Driving Systems Research Papers Stefano Carlo Lambertenghi Technische Universität München, fortiss GmbH, Mirena Flores Valdez Technical University of Munich, Andrea Stocco Technical University of Munich, fortiss Pre-print | ||
11:30 10mTalk | On the Robustness Evaluation of 3D Obstacle Detection Against Specifications in Autonomous Driving Research Papers Tri Minh-Triet Pham Concordia University, Bo Yang Concordia University, Jinqiu Yang Concordia University | ||
11:40 10mTalk | TARGET: Traffic Rule-Based Test Generation for Autonomous Driving via Validated LLM-Guided Knowledge Extraction Journal-First Track Yao Deng Macquarie University, Zhi Tu Purdue University, Jiaohong Yao Macquarie University, Mengshi Zhang TensorBlock, Tianyi Zhang Purdue University, Xi Zheng Macquarie University | ||
11:50 10mTalk | IMUFUZZER: Resilience-based Discovery of Signal Injection Attacks on Robotic Aerial Vehicles Research Papers Sudharssan Mohan University of Texas at Dallas, Kyeongseok Yang Korea University, Zelun Kong The University of Texas at Dallas, Yonghwi Kwon University of Maryland, Junghwan Rhee University of Central Oklahoma, Tyler Summers University of Texas at Dallas, Hongjun Choi DGIST, Heejo Lee Korea University, Chung Hwan Kim University of Texas at Dallas | ||
12:00 10mTalk | Argus: Resilience-Oriented Safety Assurance Framework for End-to-End ADSs Research Papers Dingji Wang Fudan University, You Lu Fudan University, Bihuan Chen Fudan University, Shuo Hao Fudan University, Haowen Jiang Fudan University, China, Yifan Tian Fudan University, Xin Peng Fudan University | ||
12:10 10mResearch paper | VRExplorer: A Model-based Approach for Automated Virtual Reality Scene Testing Research Papers Zhu Zhengyang Sun Yat-sen University, Hong-Ning Dai Hong Kong Baptist University, Hanyang Guo School of Software Engineering, Sun Yat-sen University, Zeqin Liao Sun Yat-sen University, Zibin Zheng Sun Yat-sen University Pre-print | ||
12:20 10mTalk | When Autonomous Vehicle Meets V2X Cooperative Perception: How Far Are We? Research Papers An Guo Nanjing University, Shuoxiao Zhang Nanjing University, Enyi Tang Nanjing University, Xinyu Gao , Haomin Pang Guangzhou University, Haoxiang Tian Nanyang Technological University, Singapore, Yanzhou Mu , Wu Wen Guangzhou University, Chunrong Fang Nanjing University, Zhenyu Chen Nanjing University Pre-print | ||