United We Stand: Towards End-to-End Log-based Fault Diagnosis via Interactive Multi-Task Learning
This program is tentative and subject to change.
Log-based fault diagnosis is essential for maintaining software system availability. However, existing fault diagnosis methods are built using a task-independent manner, which fails to bridge the gap between anomaly detection and root cause localization in terms of data form and diagnostic objectives, resulting in three major issues: 1) Diagnostic bias accumulates in the system; 2) System deployment relies on expensive monitoring data; 3) The collaborative relationship between diagnostic tasks is overlooked. Facing this problems, we propose a novel end-to-end log-based fault diagnosis method, Chimera, whose key idea is to achieve end-to-end fault diagnosis through bidirectional interaction and knowledge transfer between anomaly detection and root cause localization. Chimera is based on interactive multi-task learning, carefully designing interaction strategies between anomaly detection and root cause localization at the data, feature, and diagnostic result levels, thereby achieving both sub-tasks interactively within a unified end-to-end framework. Evaluation on two public datasets and one industrial dataset shows that Chimera outperforms existing methods in both anomaly detection and root cause localization, achieving improvements of over 2.92%~5.00% and 19.01%~37.09%, respectively. It has been successfully deployed in production, serving an industrial cloud platform. Website: https://chimera4log.github.io/
This program is tentative and subject to change.
Mon 17 NovDisplayed time zone: Seoul change
11:00 - 12:30 | |||
11:00 12mTalk | AutoFid: Adaptive and Noise-Aware Fidelity Measurement for Quantum Programs via Circuit Graph Analysis Research Papers | ||
11:12 12mTalk | HybridSIMD: A Super C++ SIMD Library with Integrated Auto-tuning Capabilities Research Papers Haolin Pan Institute of Software, Chinese Academy of Sciences;School of Intelligent Science and Technology, HIAS, UCAS, Hangzhou;University of Chinese Academy of Sciences, Xulin Zhou Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Mingjie Xing Institute of Software, Chinese Academy of Sciences, Yanjun Wu Institute of Software, Chinese Academy of Sciences | ||
11:25 12mTalk | PEACE: Towards Efficient Project-Level Performance Optimization via Hybrid Code Editing Research Papers Xiaoxue Ren Zhejiang University, Jun Wan Zhejiang University, Yun Peng The Chinese University of Hong Kong, Zhongxin Liu Zhejiang University, Ming Liang Ant Group, Dajun Chen Ant Group, Wei Jiang Ant Group, Yong Li Ant Group | ||
11:38 12mTalk | CoTune: Co-evolutionary Configuration Tuning Research Papers Gangda Xiong University of Electronic Science and Technology of China, Tao Chen University of Birmingham Pre-print | ||
11:51 12mTalk | It's Not Easy Being Green: On the Energy Efficiency of Programming Languages Research Papers Nicolas van Kempen University of Massachusetts Amherst, USA, Hyuk-Je Kwon University of Massachusetts Amherst, Dung Nguyen University of Massachusetts Amherst, Emery D. Berger University of Massachusetts Amherst and Amazon Web Services | ||
12:04 12mTalk | When Faster Isn't Greener: The Hidden Costs of LLM-Based Code Optimization Research Papers Tristan Coignion Université de Lille - Inria, Clément Quinton Université de Lille, Romain Rouvoy University Lille 1 and INRIA | ||
12:17 12mTalk | United We Stand: Towards End-to-End Log-based Fault Diagnosis via Interactive Multi-Task Learning Research Papers Minghua He Peking University, Chiming Duan Peking University, Pei Xiao Peking University, Tong Jia Institute for Artificial Intelligence, Peking University, Beijing, China, Siyu Yu The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Lingzhe Zhang Peking University, China, Weijie Hong Peking university, Jing Han ZTE Corporation, Yifan Wu Peking University, Ying Li School of Software and Microelectronics, Peking University, Beijing, China, Gang Huang Peking University | ||