This program is tentative and subject to change.
Specifications are an essential component of software development, and getting specifications right, especially \emph{formal specifications}, can be very challenging. While the use of tools such as model finders and model checkers can be very effective for specification analysis through property checking, researchers have also realized that by the explicit provision of wanted and unwanted specification scenarios, in the style of testing in programs, specification assessment can be significantly enhanced. Thus, various testing and test generation techniques have been recently proposed for assessing formal specifications.
In this paper, we present such a specification testing approach, in the form of a novel combinatorial testing technique for Alloy specifications, called COMBA. COMBA implements an automated partitioning of the state space of Alloy specifications solely based on elements of the specification (thus not requiring user intervention), and defines a family of test criteria, that indicate how such partitions are to be covered. The coverage of the partitions is defined by a family of combinatorial criteria that, given a positive integer $t$, require to cover through test cases all feasible $t$-uples of elements from different partitions. Finally, COMBA introduces an efficient algorithm to generate test cases that satisfy the combinatorial criteria. By leveraging on incremental SAT solving techniques, COMBA achieves significantly better performance in test generation.
We experimentally assess COMBA against existing test generation approaches for Alloy, using a large number of Alloy specifications with known errors. The results show COMBA runs faster, produces smaller test suites, and finds a significantly larger
number of real bugs than related approaches.
This program is tentative and subject to change.
Wed 19 NovDisplayed time zone: Seoul change
11:00 - 12:30 | |||
11:00 10mTalk | PALM: Synergizing Program Analysis and LLMs to Enhance Rust Unit Test Coverage Research Papers | ||
11:10 10mTalk | ROR-DSE: ROR adequate test case generation using dynamic symbolic execution Journal-First Track Sangharatna Godboley NIT Warangal | ||
11:20 10mTalk | Reflective Unit Test Generation for Precise Type Error Detection with Large Language Models Research Papers Chen Yang Tianjin University, Ziqi Wang Tianjin University, Yanjie Jiang Peking University, Lin Yang Tianjin University, Yuteng Zheng Tianjin University, Jianyi Zhou Huawei Cloud Computing Technologies Co., Ltd., Junjie Chen Tianjin University | ||
11:30 10mTalk | FailMapper: Automated Generation of Unit Tests Guided by Failure Scenarios Research Papers ruiqi dong Swinburne University of Technology, Zehang Deng Swinburne University of Technology, Xiaogang Zhu The University of Adelaide, Xiaoning Du Monash University, Huai Liu Swinburne University of Technology, Shaohua Wang Central University of Finance and Economics, Sheng Wen Swinburne University of Technology, Yang Xiang Digital Research & Innovation Capability Platform, Swinburne University of Technology | ||
11:40 10mTalk | Advancing Code Coverage: Incorporating Program Analysis with Large Language Models Journal-First Track Chen Yang Tianjin University, Junjie Chen Tianjin University, Bin Lin Hangzhou Dianzi University, Ziqi Wang Tianjin University, Jianyi Zhou Huawei Cloud Computing Technologies Co., Ltd. | ||
11:50 10mTalk | Navigating the Labyrinth: Path-Sensitive Unit Test Generation with Large Language Models Research Papers Dianshu Liao the Australian National University, Xin Yin Zhejiang University, Shidong Pan Columbia University & New York University, Chao Ni Zhejiang University, Zhenchang Xing CSIRO's Data61, Xiaoyu Sun Australian National University, Australia Pre-print | ||
12:00 10mTalk | Enhancing LLM’s Ability to Generate More Repository-Aware Unit Tests Through Precise Context Injection Research Papers Xin Yin Zhejiang University, Chao Ni Zhejiang University, Xinrui Li School of Software Technology, Zhejiang University, Liushan Chen Douyin Co., Ltd., Guojun Ma Douyin Co., Ltd., Xiaohu Yang Zhejiang University Pre-print | ||
12:10 10mTalk | Toward Cost-Effective Adaptive Random Testing: An Approximate Nearest Neighbor Approach Journal-First Track Rubing Huang Macau University of Science and Technology (M.U.S.T.), Chenhui Cui Macau University of Science and Technology, Junlong Lian Jiangsu University, Haibo Chen Jiangsu University, Dave Towey University of Nottingham Ningbo China, Weifeng Sun | ||
12:20 10mTalk | Automated Combinatorial Test Generation for Alloy Research Papers Agustín Borda Dept. of Computer Science FCEFQyN, University of Rio Cuarto, Germán Regis University of Rio Cuarto and CONICET, Nazareno Aguirre University of Rio Cuarto and CONICET, Marcelo F. Frias Dept. of Software Engineering Instituto Tecnológico de Buenos Aires, Pablo Ponzio Dept. of Computer Science FCEFQyN, University of Rio Cuarto | ||