Leveraging Lecture Content for Improved Feedback: Explorations with GPT-4 and Retrieval Augmented Generation
This paper presents the use of Retrieval Augmented Generation (RAG) to improve the feedback generated by Large Language Models for programming tasks. For this purpose, corresponding lecture recordings were transcribed and made available to the Large Language Model GPT-4 as external knowledge source together with timestamps as metainformation by using RAG. The purpose of this is to prevent hallucinations and to enforce the use of the technical terms and phrases from the lecture. In an exercise platform developed to solve programming problems for an introductory programming lecture, students can request feedback on their solutions generated by GPT-4. For this task GPT-4 receives the students’ code solution, the compiler output, the result of unit tests and the relevant passages from the lecture notes available through the use of RAG as additional context. The feedback generated by GPT-4 should guide students to solve problems independently and link to the lecture content, using the time stamps of the transcript as meta-information. In this way, the corresponding lecture videos can be viewed immediately at the corresponding positions. For the evaluation, students worked with the tool in a workshop and decided for each feedback whether it should be extended by RAG or not. First results based on a questionnaire and the collected usage data show that the use of RAG can improve feedback generation and is preferred by students in some situations. Due to the slower speed of feedback generation, the benefits are situation dependent.
Wed 31 JulDisplayed time zone: Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna change
Enter the building and take the main stairs or elevator to the top floor.