ESEIW 2024
Sun 20 - Fri 25 October 2024 Barcelona, Spain

Stack Overflow is a prominent Q&A forum, supporting developers in seeking suitable resources on programming-related matters. Having high-quality question titles is an effective means to attract developers’ attention. Unfortunately, this is often underestimated, leaving room for improvement. Research has been conducted, predominantly leveraging pre-trained models to generate titles from code snippets and problem descriptions. Yet, getting high-quality titles is still a challenging task, attributed to both the quality of the input data (e.g., containing noise and ambiguity) and inherent constraints in sequence generation models. In this paper, we present FILLER as a solution to generating Stack Overflow post titles using a fine-tuned language model with self-improvement and post ranking. Our study focuses on enhancing pre-trained language models for generating titles for Stack Overflow posts, employing a training and subsequent fine-tuning paradigm for these models. To this end, we integrate the model’s predictions into the training process, enabling it to learn from its errors, thereby lessening the effects of exposure bias. Moreover, we apply a post-ranking method to produce a variety of sample candidates, subsequently selecting the most suitable one. To evaluate FILLER, we perform experiments using benchmark datasets, and the empirical findings indicate that our model provides high-quality recommendations. Moreover, it significantly outperforms all the baselines, including Code2Que, SOTitle, CCBERT, M3NSCT5, and GPT3.5-turbo. A user study also shows that FILLER provides more relevant titles, with respect to SOTitle and GPT3.5-turbo.

Thu 24 Oct

Displayed time zone: Brussels, Copenhagen, Madrid, Paris change

16:00 - 17:30
16:00
20m
Full-paper
A Transformer-based Approach for Augmenting Software Engineering Chatbots Datasets
ESEM Technical Papers
Ahmad Abdellatif University of Calgary, Khaled Badran Concordia University, Canada, Diego Costa Concordia University, Canada, Emad Shihab Concordia University
16:20
20m
Full-paper
Unsupervised and Supervised Co-learning for Comment-based Codebase Refining and its Application in Code Search
ESEM Technical Papers
Gang Hu School of Information Science & Engineering, Yunnan University, Xiaoqin Zeng School of Information Science & Engineering, Yunnan University, Wanlong Yu , Min Peng , YUAN Mengting School of Computer Science, Wuhan University, Wuhan, China, Liang Duan
16:40
20m
Full-paper
Good things come in three: Generating SO Post Titles with Pre-Trained Models, Self Improvement and Post Ranking
ESEM Technical Papers
Duc Anh Le Hanoi University of Science and Technology, Anh M. T. Bui Hanoi University of Science and Technology, Phuong T. Nguyen University of L’Aquila, Davide Di Ruscio University of L'Aquila
Pre-print
17:00
15m
Vision and Emerging Results
PromptLink: Multi-template prompt learning with adversarial training for issue-commit link recovery
ESEM Emerging Results, Vision and Reflection Papers Track
Yang Deng The School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China, Bangchao Wang Wuhan Textile University, Zhiyuan Zou The School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China, Luyao Ye The School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
17:15
15m
Journal Early-Feedback
GPTSniffer: A CodeBERT-based classifier to detect source code written by ChatGPT
ESEM Journal-First Papers
Phuong T. Nguyen University of L’Aquila, Juri Di Rocco University of L'Aquila, Claudio Di Sipio University of l'Aquila, Riccardo Rubei University of L'Aquila, Davide Di Ruscio University of L'Aquila, Massimiliano Di Penta University of Sannio, Italy
Link to publication DOI Pre-print