BitsAI-Fix: LLM-Driven Approach for Automated Lint Error Resolution in Practice
This program is tentative and subject to change.
As enterprise codebases continue to grow in scale and complexity, the volume of lint errors far exceeds engineers’ manual remediation capacity, leading to continuous accumulation of technical debt and hindered development efficiency. This paper presents BitsAI-Fix, an automated lint error remediation workflow based on Large Language Models (LLMs), designed to address this critical challenge in industrial-scale environments. BitsAI-Fix employs tree-sitter for context expansion and generates search-and-replace format patches through specially trained LLMs, followed by lint scan re-verification to output final remediation results. Additionally, our approach introduces an innovative progressive reinforcement learning (RL) training strategy that can automatically acquire verifiable training data during the project cold-start phase and continuously iterate the model by collecting online samples through feedback after system deployment. Furthermore, we designed a targeted rule-based reward mechanism that combines format rewards and correctness rewards while penalizing redundant modifications. We also propose a “code diff matching" methodology to continuously track online effectiveness. In production deployment at ByteDance, our solution has supported over 5,000 engineers, resolved more than 12,000 static analysis issues, achieved approximately 85% remediation accuracy, with around 1,000 weekly active adopters. This work demonstrates the practical feasibility of LLM-based code remediation solutions in enterprise environments and serves as a reference for automated code fix in large-scale industrial scenarios.
This program is tentative and subject to change.
Mon 17 NovDisplayed time zone: Seoul change
16:00 - 17:10 | |||
16:00 10mTalk | Interaction-Aware Patch Assessment for Multi-Fault Automated Program Repair NIER Track Omar I. Al-Bataineh Gran Sasso Science Institute (GSSI) | ||
16:10 10mTalk | Simulated Interactive Debugging NIER Track Yannic Noller Ruhr University Bochum, Erick Chandra Singapore University of Technology and Design, Srinidhi HC Singapore University of Technology and Design, Kenny Choo Singapore University of Technology and Design, Cyrille Jegourel ISTD, Singapore University of Technology and Design, Oka Kurniawan Singapore University of Technology and Design, Chris Poskitt Singapore Management University Pre-print | ||
16:20 10mTalk | KAIOps: A Platform Solution of End-to-End Multi-Modal AIOps for AI Training at Scale Industry Showcase Zeying Wang Beihang University, Junhong Liu Beihang University, Penghao Zhang Kuaishou Inc., Xiaoyang Sun University of Leeds, Xu Wang Beihang University, Tianyu Wo , Chunming Hu Beihang University, Chengru Song Kuaishou Technology, Jin Ouyang Kuaishou Inc., Renyu Yang | ||
16:30 10mTalk | KAIR: A Statistical and Causal Approach to Pinpointing Stragglers in Distributed Model Training Industry Showcase Yitang Yang Beihang University, Junhong Liu Beihang University, Jiapeng Chen Kuaishou Inc., Xiaoyang Sun University of Leeds, Tianyu Wo , Chunming Hu Beihang University, Chengru Song Kuaishou Technology, Jin Ouyang Kuaishou Inc., Renyu Yang | ||
16:40 10mTalk | BitsAI-Fix: LLM-Driven Approach for Automated Lint Error Resolution in Practice Industry Showcase Yuanpeng Li ByteDance, Qi Long Carnegie Mellon University, Zhiyuan Yao Zhejiang University, Jian Xu ByteDance, Lintao Xie ByteDance, Xu He ByteDance, Lu Geng ByteDance, Xin Han ByteDance, Yueyan Chen ByteDance, Wenbo Duan ByteDance | ||
16:50 10mTalk | TrioXpert: An automated incident management framework for microservice system Industry Showcase Yongqian Sun Nankai University, Yu Luo Nankai University, Xidao Wen BizSeer, Yuan Yuan National University of Defense Technology, China, Xiaohui Nie Computer Network Information Center at Chinese Academy of Sciences, Shenglin Zhang Nankai University, Tong Liu Lenovo (TianJin) Co., Ltd., Xi Luo Lenovo (TianJin) Co., Ltd. | ||
17:00 10mTalk | eARCO: Efficient Automated Root Cause Analysis with Prompt Optimization Industry Showcase Drishti Goel University of Illinois Urbana Champaign, Raghav Magazine Microsoft Research, Supriyo Ghosh Microsoft, Akshay Nambi Microsoft Research, Prathamesh Deshpande Microsoft, Xuchao Zhang Microsoft, Chetan Bansal Microsoft Research, Saravan Rajmohan Microsoft | ||