As scientific progress highly depends on the quality of research data, there are strict requirements for data quality coming from the scientific community. A major challenge in data quality assurance is to localise quality problems that are inherent to data collections. In this paper, we present the results of a qualitative study on quality problems occurring in cultural heritage data. To cope with the dynamic digitalisation of the humanities, we present a model-driven approach to analyse the quality of research data. It allows abstracting from the underlying database technology. Based on the observation that many of the identified quality problems show anti-patterns, a data engineer formulates analysis patterns that are generic concerning the database format and technology. A domain expert chooses a pattern that has been adapted to a specific database technology and concretises it for a domain-specific database format. The resulting concrete patterns are used by data analysts to locate quality problems in their databases. As a proof of concept, we implemented tool support that realises this approach for XML databases. We evaluated our approach concerning expressiveness and performance.