ICSE 2024
Fri 12 - Sun 21 April 2024 Lisbon, Portugal
Wed 17 Apr 2024 15:15 - 15:22 at Pequeno Auditório - Program Repair 2 Chair(s): Xiang Gao

Many Machine Learning(ML)-based approaches have been proposed to automatically detect, localize, and repair software vulnerabilities. While ML-based methods are more effective than program analysis-based vulnerability analysis tools, few have been integrated into modern Integrated Development Environments (IDEs), hindering practical adoption. To bridge this critical gap, we propose in this article AIBUGHUNTER, a novel Machine Learning-based software vulnerability analysis tool for C/C++ languages that is integrated into the Visual Studio Code (VS Code) IDE. AIBUGHUNTER helps software developers to achieve real-time vulnerability detection, explanation, and repairs during programming. In particular, AIBUGHUNTER scans through developers’ source code to (1) locate vulnerabilities, (2) identify vulnerability types, (3) estimate vulnerability severity, and (4) suggest vulnerability repairs. We integrate our previous works (i.e., LineVul and VulRepair) to achieve vulnerability localization and repairs. In this article, we propose a novel multi-objective optimization (MOO)-based vulnerability classification approach and a transformer-based estimation approach to help AIBUGHUNTER accurately identify vulnerability types and estimate severity. Our empirical experiments on a large dataset consisting of 188K+ C/C++ functions confirm that our proposed approaches are more accurate than other state-of-the-art baseline methods for vulnerability classification and estimation. Furthermore, we conduct qualitative evaluations including a survey study and a user study to obtain software practitioners’ perceptions of our AIBUGHUNTER tool and assess the impact that AIBUGHUNTER may have on developers’ productivity in security aspects. Our survey study shows that our AIBUGHUNTER is perceived as useful where 90% of the participants consider adopting our AIBUGHUNTER during their software development. Last but not least, our user study shows that our AIBUGHUNTER can enhance developers’ productivity in combating cybersecurity issues during software development. AIBUGHUNTER is now publicly available in the Visual Studio Code marketplace.

Wed 17 Apr

Displayed time zone: Lisbon change

14:00 - 15:30
14:00
15m
Talk
Practical Program Repair via Preference-based Ensemble Strategy
Research Track
Wenkang Zhong State Key Laboratory for Novel Software and Technology, Nanjing University, 22 Hankou Road, Nanjing, China, Chuanyi Li Nanjing University, Kui Liu Huawei, Tongtong Xu Huawei, Jidong Ge Nanjing University, Tegawendé F. Bissyandé University of Luxembourg, Bin Luo Nanjing University, Vincent Ng Human Language Technology Research Institute, University of Texas at Dallas, Richardson, TX 75083-0688
14:15
15m
Talk
Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data
Research Track
Martin Tappler TU Graz; Silicon Austria Labs, Andrea Pferscher Institute of Software Technology, Graz University of Technology , Bernhard Aichernig Graz University of Technology, Bettina Könighofer Graz University of Technology
14:30
15m
Talk
BinAug: Enhancing Binary Similarity Analysis with Low-Cost Input Repairing
Research Track
WONG Wai Kin Hong Kong University of Science and Technology, Huaijin Wang Hong Kong University of Science and Technology, Li Zongjie Hong Kong University of Science and Technology, Shuai Wang The Hong Kong University of Science and Technology
14:45
15m
Talk
Constraint Based Program Repair for Persistent Memory Bugs
Research Track
Zunchen Huang University of Southern California, Chao Wang University of Southern California
15:00
15m
Talk
User-Centric Deployment of Automated Program Repair at Bloomberg
Software Engineering in Practice
David Williams University College London, James Callan UCL, Serkan Kirbas Bloomberg LP, Sergey Mechtaev University College London, Justyna Petke University College London, Thomas Prideaux-Ghee Bloomberg LP, Federica Sarro University College London
15:15
7m
Talk
AIBugHunter: A Practical Tool for Predicting, Classifying and Repairing Software Vulnerabilities
Journal-first Papers
Michael Fu Monash University, Kla Tantithamthavorn Monash University, Trung Le Monash University, Australia, Yuki Kume Monash University, Van Nguyen Monash University, Dinh Phung Monash University, Australia, John Grundy Monash University
Link to publication DOI Pre-print