ICSE 2024
Fri 12 - Sun 21 April 2024 Lisbon, Portugal

Leveraging recent advancements in large language models, modern neural code completion models have demonstrated the capability to generate highly accurate code suggestions. However, their massive size poses challenges in terms of computational costs and environmental impact, hindering their widespread adoption in practical scenarios. Dynamic inference emerges as a promising solution, as it allocates minimal computation during inference while maintaining the model’s performance. In this research, we explore dynamic inference within the context of code completion. Initially, we conducted an empirical investigation on GPT-2, focusing on the inference capabilities of intermediate layers for code completion. We found that 54.4% of tokens can be accurately generated using just the first layer, signifying significant computational savings potential. Moreover, despite using all layers, the model still fails to predict 14.5% of tokens correctly, and the subsequent completions continued from them are rarely considered helpful, with only a 4.2% Acceptance Rate. These findings motivate our exploration of dynamic inference in code completion and inspire us to enhance it with a decision-making mechanism that stops the generation of incorrect code. We thus propose a novel dynamic inference method specifically tailored for code completion models. This method aims not only to produce correct predictions with largely reduced computation but also to prevent incorrect predictions proactively. Our extensive evaluation across various settings showcases the potential of the proposed method. On average, it can skip 1.7 layers out of 16 layers in the models, leading to an 11.2% speedup during the completion generation with only a marginal 1.1% reduction in ROUGE-L.

Thu 18 Apr

Displayed time zone: Lisbon change

11:00 - 12:30
Language Models and Generated Code 2Demonstrations / Research Track at Maria Helena Vieira da Silva
Chair(s): Reyhaneh Jabbarvand University of Illinois at Urbana-Champaign
11:00
15m
Talk
Exploring the Potential of ChatGPT in Automated Code Refinement: An Empirical Study
Research Track
Qi Guo Tianjin University, China, Junming Cao Fudan University, Xiaofei Xie Singapore Management University, Shangqing Liu Nanyang Technological University, Xiaohong Li Tianjin University, Bihuan Chen Fudan University, Xin Peng Fudan University
11:15
15m
Talk
Deep Learning or Classical Machine Learning? An Empirical Study on Log-Based Anomaly Detection
Research Track
BoXi Yu The Chinese University of Hong Kong, Shenzhen, Jiayi Yao The Chinese University of Hong Kong, Shenzhen, Qiuai Fu Huawei Cloud Computing Technologies CO., LTD., Zhiqing Zhong Chinese University of Hong Kong, Shenzhen, Haotian Xie The Chinese University of Hong Kong, Shenzhen, Yaoliang Wu Huawei Cloud Computing Technologies Co., Ltd., Yuchi Ma Huawei Cloud Computing Technologies CO., LTD., Pinjia He Chinese University of Hong Kong, Shenzhen
11:30
15m
Talk
TRACED: Execution-aware Pre-training for Source Code
Research Track
Yangruibo Ding Columbia University, Benjamin Steenhoek Iowa State University, Kexin Pei The University of Chicago, Gail Kaiser Columbia University, Wei Le Iowa State University, Baishakhi Ray AWS AI Labs
11:45
15m
Talk
On Extracting Specialized Code Abilities from Large Language Models: A Feasibility Study
Research Track
Li Zongjie Hong Kong University of Science and Technology, Chaozheng Wang The Chinese University of Hong Kong, Pingchuan Ma HKUST, Chaowei Liu National University of Singapore, Shuai Wang The Hong Kong University of Science and Technology, Daoyuan Wu Nanyang Technological University, Cuiyun Gao Harbin Institute of Technology, Yang Liu Nanyang Technological University
12:00
15m
Talk
When Neural Code Completion Models Size up the Situation: Attaining Cheaper and Faster Completion through Dynamic Model Inference
Research Track
Zhensu Sun Singapore Management University, Xiaoning Du Monash University, Australia, Fu Song State Key Laboratory of Computer Science and Institute of Software, Chinese Academy of Sciences., Shangwen Wang National University of Defense Technology, Li Li Beihang University
Pre-print
12:15
7m
Talk
TestSpark: IntelliJ IDEA’s Ultimate Test Generation Companion
Demonstrations
Arkadii Sapozhnikov JetBrains Research, Mitchell Olsthoorn Delft University of Technology, Annibale Panichella Delft University of Technology, Vladimir Kovalenko JetBrains Research, Pouria Derakhshanfar JetBrains Research