Transformer-Based Models Are Not Yet Perfect At Learning to Emulate Structural Recursion
This paper investigates the ability of transformer-based models to learn structural recursion from examples. Recursion is a universal concept in both natural and formal languages. Structural recursion is central to the programming language and formal mathematics tasks where symbolic tools currently excel beyond neural models, such as inferring semantic relations between datatypes and emulating program behavior. We introduce a general framework that nicely connects the abstract concepts of structural recursion in the programming language domain to concrete sequence modeling problems and learned models’ behavior. The framework includes a representation that captures the general syntax of structural recursion, coupled with two different frameworks for understanding their semantics—one that is more natural from a programming languages perspective and one that helps bridge that perspective with a mechanistic understanding of the underlying transformer architecture. With our framework as a powerful conceptual tool, we identify different issues under various set-ups. The models trained to emulate recursive computations cannot fully capture the recursion yet instead fit short-cut algorithms and thus cannot solve certain edge cases that are under-represented in the training distribution. In addition, it is difficult for state-of-theart large language models (LLMs) to mine recursive rules from in-context demonstrations. Meanwhile, these LLMs fail in interesting ways when emulating reduction (step-wise computation) of the recursive function.
Mon 15 AprDisplayed time zone: Lisbon change
16:00 - 17:30 | Late Afternoon SessionInteNSE at Daciano da Costa Chair(s): Reyhaneh Jabbarvand University of Illinois at Urbana-Champaign, Saeid Tizpaz-Niari University of Texas at El Paso | ||
16:00 30mTalk | Transformer-Based Models Are Not Yet Perfect At Learning to Emulate Structural Recursion InteNSE Shizhuo Zhang University of Illinois Urbana-Champaign Pre-print | ||
16:30 30mTalk | SWE-bench: Can Language Models Resolve Real-World GitHub Issues? InteNSE John Yang Princeton Pre-print | ||
17:00 30mDay closing | InteNSE 2024 Closing Remarks InteNSE Reyhaneh Jabbarvand University of Illinois at Urbana-Champaign |