Write a Blog >>
ICSE 2023
Sun 14 - Sat 20 May 2023 Melbourne, Australia
Fri 19 May 2023 16:15 - 16:30 at Meeting Room 103 - Pre-trained and few shot learning for SE Chair(s): Yiling Lou

Logs generated by large-scale software systems provide crucial information for engineers to understand the system status and diagnose problems of the systems. Log parsing, which converts raw log messages into structured data, is the first step to enabling automated log analytics. Existing log parsers extract the common part as log templates using statistical features. However, these log parsers often fail to identify the correct templates and parameters because: 1) they often overlook the semantic meaning of log messages, and 2) they require domain-specific knowledge for different log datasets. To address the limitations of existing methods, in this paper, we propose LogPPT to capture the patterns of templates using prompt-based few-shot learning. LogPPT utilises a novel prompt tuning method to recognise keywords and parameters based on a few labelled log data. In addition, an adaptive random sampling algorithm is designed to select a small yet diverse training set. We have conducted extensive experiments on 16 public log datasets. The experimental results show that LogPPT is effective and efficient for log parsing.

Fri 19 May

Displayed time zone: Hobart change

15:45 - 17:15
Pre-trained and few shot learning for SETechnical Track / Journal-First Papers at Meeting Room 103
Chair(s): Yiling Lou Fudan University
15:45
15m
Talk
On the validity of pre-trained transformers for natural language processing in the software engineering domain
Journal-First Papers
Alexander Trautsch University of Passau, Julian von der Mosel , Steffen Herbold University of Passau
16:00
15m
Talk
Automating Code-Related Tasks Through Transformers: The Impact of Pre-training
Technical Track
Rosalia Tufano Università della Svizzera Italiana, Luca Pascarella ETH Zurich, Gabriele Bavota Software Institute, USI Università della Svizzera italiana
16:15
15m
Talk
Log Parsing with Prompt-based Few-shot Learning
Technical Track
Van-Hoang Le The University of Newcastle, Hongyu Zhang The University of Newcastle
Pre-print
16:30
15m
Talk
Retrieval-Based Prompt Selection for Code-Related Few-Shot Learning
Technical Track
Noor Nashid University of British Columbia, Mifta Sintaha University of British Columbia, Ali Mesbah University of British Columbia (UBC)
Pre-print
16:45
15m
Paper
An Empirical Study of Pre-Trained Model Reuse in the Hugging Face Deep Learning Model Registry
Technical Track
Wenxin Jiang Purdue University, Nicholas Synovic Loyola University Chicago, Matt Hyatt Loyola University Chicago, Taylor R. Schorlemmer Purdue University, Rohan Sethi Loyola University Chicago, Yung-Hsiang Lu Purdue University, George K. Thiruvathukal Loyola University Chicago and Argonne National Laboratory, James C. Davis Purdue University
Pre-print
17:00
15m
Talk
ContraBERT: Enhancing Code Pre-trained Models via Contrastive Learning
Technical Track
Shangqing Liu Nanyang Technological University, bozhi wu Nanyang Technological University, Xiaofei Xie Singapore Management University, Guozhu Meng Institute of Information Engineering, Chinese Academy of Sciences, Yang Liu Nanyang Technological University