Is It Enough to Recommend Tasks to Newcomers? Understanding Mentoring on Good First Issues
Newcomers are critical for the success and continuity of open source software (OSS) projects. To attract newcomers and facilitate their onboarding, many OSS projects recommend tasks for newcomers, such as good first issues (GFIs). Previous studies have preliminarily investigated the effects of GFIs and techniques to identify suitable GFIs. However, it is still unclear whether just recommending tasks is enough and how significant mentoring is for newcomers. To better understand mentoring in OSS communities, we analyze the resolution process of 48,402 GFIs from 964 repositories through a mix-method approach. We investigate the extent, the mentorship structures, the discussed topics, and the relevance of expert involvement. We find that $\sim$70% of GFIs have expert participation, with each GFI usually having one expert who makes two comments. Half of GFIs will receive their first expert comment within 8.5 hours after a newcomer comment. Through analysis of the collaboration networks of newcomers and experts, we observe that community mentorship presents four types of structure: centralized mentoring, decentralized mentoring, collaborative mentoring, and distributed mentoring. As for discussed topics, we identify 14 newcomer challenges and 18 expert mentoring content. By fitting the generalized linear models, we find that expert involvement positively correlates with newcomers’ successful contributions but negatively correlates with newcomers’ retention. Our study manifests the status and significance of mentoring in the OSS projects, which provides rich practical implications for optimizing the mentoring process and helping newcomers contribute smoothly and successfully.