ICSE 2024
Fri 12 - Sun 21 April 2024 Lisbon, Portugal

Deep neural network (DNN) models have become increasingly crucial components in intelligent software systems. However, training a DNN model is typically expensive in terms of both time and money. To address this issue, researchers have recently focused on reusing existing DNN models - borrowing the idea of code reuse in software engineering. However, reusing an entire model could cause extra overhead or inherits the weakness from the undesired functionalities. Hence, existing work proposes to decompose an already trained model into modules, i.e., \textit{modularizing-after-training}, and enable module reuse. Since trained models are not built for modularization, modularizing-after-training incurs huge overhead and model accuracy loss. In this paper, we propose a novel approach that incorporates modularization into the model training process, i.e., \textit{modularizing-while-training} (MwT). We train a model to be structurally modular through two loss functions that optimize intra-module cohesion and inter-module coupling. We have implemented the proposed approach for modularizing Convolutional Neural Network (CNN) models in this work. The evaluation results on representative models demonstrate that MwT outperforms the state-of-the-art approach. Specifically, the accuracy loss caused by MwT is only 1.13%, which is 1.76% less than that of the baseline. The kernel retention rate of the modules generated by MwT is only 14.58%, with a reduction of 74.31% over the state-of-the-art approach. Furthermore, the total time cost required for training and modularizing is only 108 minutes, half of the baseline.

Wed 17 Apr

Displayed time zone: Lisbon change

11:00 - 12:30
Language Models and Generated Code 1Research Track / New Ideas and Emerging Results at Maria Helena Vieira da Silva
Chair(s): Yiling Lou Fudan University
11:00
15m
Talk
Modularizing while Training: a New Paradigm for Modularizing DNN ModelsACM SIGSOFT Distinguished Paper Award
Research Track
Binhang Qi Beihang University, Hailong Sun Beihang University, Hongyu Zhang Chongqing University, Ruobing Zhao Beihang University, Xiang Gao Beihang University
Pre-print
11:15
15m
Research paper
KnowLog: Knowledge Enhanced Pre-trained Language Model for Log Understanding
Research Track
Lipeng Ma Fudan University, Weidong Yang Fudan University, Bo Xu Donghua University, Sihang Jiang Fudan University, Ben Fei Fudan University, Jiaqing Liang Fudan University, Mingjie Zhou Fudan University, Yanghua Xiao Fudan University
11:30
15m
Talk
FAIR: Flow Type-Aware Pre-Training of Compiler Intermediate RepresentationsACM SIGSOFT Distinguished Paper Award
Research Track
Changan Niu Software Institute, Nanjing University, Chuanyi Li Nanjing University, Vincent Ng Human Language Technology Research Institute, University of Texas at Dallas, Richardson, TX 75083-0688, David Lo Singapore Management University, Bin Luo Nanjing University
Pre-print
11:45
15m
Talk
Unveiling Memorization in Code Models
Research Track
Zhou Yang Singapore Management University, Zhipeng Zhao Singapore Management University, Chenyu Wang Singapore Management University, Jieke Shi Singapore Management University, Dongsun Kim Kyungpook National University, DongGyun Han Royal Holloway, University of London, David Lo Singapore Management University
12:00
15m
Talk
Code Search is All You Need? Improving Code Suggestions with Code SearchACM SIGSOFT Distinguished Paper Award
Research Track
Junkai Chen Zhejiang University, Xing Hu Zhejiang University, Zhenhao Li Concordia University, Cuiyun Gao Harbin Institute of Technology, Xin Xia Huawei Technologies, David Lo Singapore Management University
12:15
7m
Talk
Expert Monitoring: Human-Centered Concept Drift Detection in Machine Learning Operations
New Ideas and Emerging Results
Joran Leest Vrije Universiteit Amsterdam, Claudia Raibulet Vrije Universiteit Amsterdam, Ilias Gerostathopoulos Vrije Universiteit Amsterdam, Patricia Lago Vrije Universiteit Amsterdam
Pre-print