The rapid and widespread adoption of Deep Neural Networks (DNNs) has called for ways to test their behaviour, and many testing approaches have successfully revealed misbehaviour of DNNs. However, it is relatively unclear what one can do to correct such behaviour after revelation, as retraining involves costly data collection and does not guarantee to fix the underlying issue. This paper introduces Arachne, a novel program repair technique for DNNs, which directly repairs DNNs using their input-output pairs as a specification. Arachne localises neural weights on which it can generate effective patches and uses Differential Evolution to optimise the localised weights and correct the misbehaviour. An empirical study using different benchmarks shows that Arachne can fix specific misclassifications of a DNN without reducing general accuracy significantly. On average, patches generated by Arachne generalise to 61.3% of unseen misbehaviour, whereas those by a state-of-the-art DNN repair technique generalise only to 10.2% and sometimes to none while taking tens of times more than Arachne. We also show that Arachne can address fairness issues by debiasing a gender classification model. Finally, we successfully apply Arachne to a text sentiment model to show that it generalises beyond Convolutional Neural Networks.
Thu 18 MayDisplayed time zone: Hobart change
13:45 - 15:15 | Program repair with and for AITechnical Track / Journal-First Papers / DEMO - Demonstrations at Meeting Room 102 Chair(s): Julia Rubin University of British Columbia, Canada | ||
13:45 15mTalk | Impact of Code Language Models on Automated Program Repair Technical Track Nan Jiang Purdue University, Kevin Liu Lynbrook High School, Thibaud Lutellier University of Alberta, Lin Tan Purdue University Pre-print | ||
14:00 15mTalk | Tare: Type-Aware Neural Program Repair Technical Track Qihao Zhu Peking University, Zeyu Sun Zhongguancun Laboratory, Wenjie Zhang Peking University, Yingfei Xiong Peking University, Lu Zhang Peking University | ||
14:15 15mTalk | Template-based Neural Program Repair Technical Track Xiangxin Meng Beihang University, Beijing, China, Xu Wang Beihang University, Hongyu Zhang The University of Newcastle, Hailong Sun School of Computer Science and Engineering, Beihang University, Beijing,China, Xudong Liu Beihang University, Chunming Hu Beihang University Pre-print | ||
14:30 15mTalk | Automated Repair of Programs from Large Language Models Technical Track Zhiyu Fan National University of Singapore, Singapore, Xiang Gao Beihang University, China, Martin Mirchev National University of Singapore, Abhik Roychoudhury National University of Singapore, Shin Hwei Tan Southern University of Science and Technology | ||
14:45 15mTalk | Automated Program Repair in the Era of Large Pre-trained Language Models Technical Track Chunqiu Steven Xia University of Illinois at Urbana-Champaign, Yuxiang Wei University of Illinois at Urbana-Champaign, Lingming Zhang University of Illinois at Urbana-Champaign | ||
15:00 7mTalk | AIREPAIR: A Repair Platform for Neural Networks DEMO - Demonstrations Xidan Song Department of Computer Science, University of Manchester, UK, Youcheng Sun The University of Manchester, Mustafa A. Mustafa Department of Computer Science, University of Manchester, UK, imec-COSIC, KU Leuven, Belgium, Lucas C. Cordeiro University of Manchester | ||
15:07 7mTalk | Arachne: Search Based Repair of Deep Neural Networks Journal-First Papers Link to publication DOI Pre-print |