CrossCodeBench: Benchmarking Cross-Task Generalization of Source Code Models
Despite the recent advances showing that a model pre-trained on large-scale source code data is able to gain appreciable generalization capability, it still requires a sizeable amount of data on the target task for fine-tuning. And the effectiveness of the model generalization is largely affected by the size and quality of the fine-tuning data, which is detrimental for target tasks with limited or unavailable resources. Therefore, cross-task generalization, with the goal of improving the generalization of the model to tasks that have not been seen before, is of strong research and application value.
In this paper, we propose a large-scale benchmark that includes 216 existing code-related tasks. Then, we annotate each task with the corresponding meta information such as task description and instruction, which contains detailed information about the task and a solution guide. This also helps us to easily create a wide variety of ``training/evaluation'' task splits to evaluate the various cross-task generalization capabilities of the model. Then we perform some preliminary experiments to demonstrate that the cross-task generalization of models can be largely improved by learning in-context learning methods such as few-shot learning and learning from task instructions, which shows the promising prospects of conducting cross-task learning research on our benchmark. We hope that the collection of the datasets and our benchmark will facilitate future work that is not limited to cross-task generalization.
Wed 17 MayDisplayed time zone: Hobart change
13:45 - 15:15 | AI systems engineeringSEIP - Software Engineering in Practice / Technical Track / NIER - New Ideas and Emerging Results / Journal-First Papers at Meeting Room 104 Chair(s): Xin Peng Fudan University | ||
13:45 15mTalk | FedDebug: Systematic Debugging for Federated Learning Applications Technical Track | ||
14:00 15mTalk | Practical and Efficient Model Extraction of Sentiment Analysis APIs Technical Track Weibin Wu Sun Yat-sen University, Jianping Zhang The Chinese University of Hong Kong, Victor Junqiu Wei The Hong Kong Polytechnic University, Xixian Chen Tencent, Zibin Zheng School of Software Engineering, Sun Yat-sen University, Irwin King The Chinese University of Hong Kong, Michael Lyu The Chinese University of Hong Kong | ||
14:15 15mTalk | CrossCodeBench: Benchmarking Cross-Task Generalization of Source Code Models Technical Track Changan Niu Software Institute, Nanjing University, Chuanyi Li Nanjing University, Vincent Ng Human Language Technology Research Institute, University of Texas at Dallas, Richardson, TX 75083-0688, Bin Luo Nanjing University Pre-print | ||
14:30 15mTalk | Challenges in Adopting Artificial Intelligence Based User Input Verification Framework in Reporting Software Systems SEIP - Software Engineering in Practice Dong Jae Kim Concordia University, Tse-Hsun (Peter) Chen Concordia University, Steve Sporea , Andrei Toma ERA Environmental Management Solutions, Laura Weinkam , Sarah Sajedi ERA Environmental Management Solutions, Steve Sporea | ||
14:45 7mTalk | Towards Understanding Quality Challenges of the Federated Learning for Neural Networks: A First Look from the Lens of Robustness Journal-First Papers Amin Eslami Abyane University of Calgary, Derui Zhu Technical University of Munich, Roberto Souza University of Calgary, Lei Ma University of Alberta, Hadi Hemmati York University | ||
14:52 7mTalk | An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural Networks Journal-First Papers Lizhi Liao Concordia University, Heng Li Polytechnique Montréal, Weiyi Shang University of Waterloo, Lei Ma University of Alberta | ||
15:00 7mTalk | Black-box Safety Analysis and Retraining of DNNs based on Feature Extraction and Clustering Journal-First Papers Mohammed Attaoui University of Luxembourg, Hazem FAHMY University of Luxembourg, Fabrizio Pastore University of Luxembourg, Lionel Briand University of Luxembourg; University of Ottawa Link to publication Pre-print | ||
15:07 7mTalk | Iterative Assessment and Improvement of DNN Operational Accuracy NIER - New Ideas and Emerging Results Antonio Guerriero Università di Napoli Federico II, Roberto Pietrantuono Università di Napoli Federico II, Stefano Russo Università di Napoli Federico II Pre-print |