Fairness of machine learning (ML) software has become a major concern in the recent past. Although recent research on testing and improving fairness have demonstrated impact on real-world software, providing fairness guarantee in practice is still lacking. Certification of ML models is challenging because of the complex decision-making process of the models. In this paper, we proposed Fairify, the first SMT-based approach to verify individual fairness property in neural network (NN) models. Individual fairness ensures that any two similar individuals get similar treatment irrespective of their protected attributes e.g., race, sex, age. Verifying this fairness property is hard because of its global nature and the presence of non-linear computation nodes in NN. We proposed sound approach to make individual fairness verification tractable for the developers. The key idea is that many neurons in the NN always remain inactive when a smaller part of the input domain is considered. So, Fairify leverages white-box access to the models in production and then apply formal analysis based pruning. Our approach adopts input partitioning and then prunes the NN for each partition to provide fairness certification or counterexample. We leveraged interval arithmetic and activation heuristic of the neurons to perform the pruning as necessary. We evaluated Fairify on 25 real-world neural networks collected from four different sources, and demonstrated the effectiveness, scalability and performance over baseline and closely related work. Fairify is also configurable based on the domain and size of the NN. Our novel formulation of the problem can answer targeted verification queries with relaxations and counterexamples, which have practical implications.
Thu 18 MayDisplayed time zone: Hobart change
13:45 - 15:15 | AI bias and fairnessDEMO - Demonstrations / Technical Track / Journal-First Papers at Meeting Room 104 Chair(s): Amel Bennaceur The Open University, UK | ||
13:45 15mTalk | Towards Understanding Fairness and its Composition in Ensemble Machine Learning Technical Track Usman Gohar Dept. of Computer Science, Iowa State University, Sumon Biswas Carnegie Mellon University, Hridesh Rajan Iowa State University Pre-print | ||
14:00 15mTalk | Fairify: Fairness Verification of Neural Networks Technical Track Pre-print | ||
14:15 15mTalk | Leveraging Feature Bias for Scalable Misprediction Explanation of Machine Learning Models Technical Track Jiri Gesi University of California, Irvine, Xinyun Shen University of California, Irvine, Yunfan Geng University of California, Irvine, Qihong Chen University of California, Irvine, Iftekhar Ahmed University of California at Irvine | ||
14:30 15mTalk | Information-Theoretic Testing and Debugging of Fairness Defects in Deep Neural Networks Technical Track Verya Monjezi University of Texas at El Paso, Ashutosh Trivedi University of Colorado Boulder, Gang (Gary) Tan Pennsylvania State University, Saeid Tizpaz-Niari University of Texas at El Paso Pre-print | ||
14:45 7mTalk | Seldonian Toolkit: Building Software with Safe and Fair Machine Learning DEMO - Demonstrations Austin Hoag Berkeley Existential Risk Initiative, James E. Kostas University of Massachusetts, Bruno Castro da Silva University of Massachusetts, Philip S. Thomas University of Massachusetts, Yuriy Brun University of Massachusetts Pre-print Media Attached | ||
14:52 7mTalk | What Would You do? An Ethical AI Quiz DEMO - Demonstrations Wei Teo Monash University, Ze Teoh Monash University, Dayang Abang Arabi Monash University, Morad Aboushadi Monash University, Khairenn Lai Monash University, Zhe Ng Monash University, Aastha Pant Monash Univeristy, Rashina Hoda Monash University, Kla Tantithamthavorn Monash University, Burak Turhan University of Oulu Pre-print Media Attached | ||
15:00 7mTalk | Search-Based Fairness Testing for Regression-Based Machine Learning Systems Journal-First Papers Anjana Perera Oracle Labs, Australia, Aldeida Aleti Monash University, Kla Tantithamthavorn Monash University, Jirayus Jiarpakdee Monash University, Australia, Burak Turhan University of Oulu, Lisa Kuhn Monash University, Katie Walker Monash University Link to publication DOI | ||
15:07 7mTalk | FairMask: Better Fairness via Model-based Rebalancing of Protected Attributes Journal-First Papers Kewen Peng North Carolina State University, Tim Menzies North Carolina State University, Joymallya Chakraborty North Carolina State University Link to publication Pre-print |