Wed 11 May 2022 11:20 - 11:25 at ICSE room 1-odd hours - Machine Learning with and for SE 10 Chair(s): Preetha Chatterjee
Reproducibility is an increasing concern in Artificial Intelligence (AI), particularly in the area of Deep Learning (DL). Being able to reproduce DL models is crucial for AI-based systems, as it is closely tied to various tasks like training, testing, debugging, and auditing. However, DL models are challenging to be reproduced due to issues like randomness in the software (e.g., DL algorithms) and non-determinism in the hardware (e.g., GPU). There are various practices to mitigate some of the aforementioned issues. However, many of them are either too intrusive or can only work for a specific usage context. In this paper, we propose a systematic approach to training reproducible DL models. Our approach includes three main parts: (1) a set of general criteria to thoroughly evaluate the reproducibility of DL models for two different domains, (2) a unified framework which leverages record-and-replay technique to mitigate software-related randomness and a profile-and-patch technique to control hardware-related non-determinism, and (3) a reproducibility guideline which explains the rationales and the mitigation strategies on conducting a reproducible training process for DL models. Case study results show our approach can successfully reproduce six open source and one commercial DL models.
Mon 9 MayDisplayed time zone: Eastern Time (US & Canada) change
Wed 11 MayDisplayed time zone: Eastern Time (US & Canada) change
11:00 - 12:00 | Machine Learning with and for SE 10Technical Track / SEIP - Software Engineering in Practice / Journal-First Papers at ICSE room 1-odd hours Chair(s): Preetha Chatterjee Drexel University, USA | ||
11:00 5mTalk | Defect Reduction Planning (using TimeLIME) Journal-First Papers Authorizer link Pre-print Media Attached | ||
11:05 5mTalk | Automatic Fault Detection for Deep Learning Programs Using Graph Transformations Journal-First Papers Amin Nikanjam École Polytechnique de Montréal, Houssem Ben Braiek École Polytechnique de Montréal, Mohammad Mehdi Morovati École Polytechnique de Montréal, Foutse Khomh Polytechnique Montréal Link to publication DOI Media Attached | ||
11:10 5mTalk | Counterfactual Explanations for Models of Code SEIP - Software Engineering in Practice Jürgen Cito TU Wien and Meta, Işıl Dillig University of Texas at Austin, Vijayaraghavan Murali Meta Platforms, Inc., Satish Chandra Facebook Pre-print Media Attached | ||
11:15 5mTalk | VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning Technical Track Qibin Chen Carnegie Mellon University, Jeremy Lacomis Carnegie Mellon University, Edward J. Schwartz Carnegie Mellon University Software Engineering Institute, Graham Neubig Carnegie Mellon University, Bogdan Vasilescu Carnegie Mellon University, USA, Claire Le Goues Carnegie Mellon University DOI Pre-print Media Attached | ||
11:20 5mTalk | Towards Training Reproducible Deep Learning Models Technical Track Boyuan Chen Centre for Software Excellence, Huawei Canada, Mingzhi Wen Huawei Technologies, Yong Shi Huawei Technologies, Dayi Lin Centre for Software Excellence, Huawei, Canada, Gopi Krishnan Rajbahadur Centre for Software Excellence, Huawei, Canada, Zhen Ming (Jack) Jiang York University Pre-print Media Attached | ||
11:25 5mTalk | Learning to Reduce False Positives in Analytic Bug Detectors Technical Track Anant Kharkar Microsoft, Roshanak Zilouchian Moghaddam Microsoft, Matthew Jin Microsoft Corporation, Xiaoyu Liu Microsoft Corporation, Xin Shi Microsoft Corporation, Colin Clement Microsoft, Neel Sundaresan Microsoft Corporation Pre-print Media Attached |