Enhancing Code Generation via Bidirectional Comment-Level Mutual Grounding
This program is tentative and subject to change.
Large Language Models (LLMs) have demonstrated unprecedented capability in code generation. However, LLM-generated code is still plagued with a wide range of functional errors, especially for complex programming tasks that LLMs have not seen before. Recent studies have shown that developers often struggle with inspecting and fixing incorrect code generated by LLMs, diminishing their productivity and trust in LLM-based code generation. Inspired by the mutual grounding theory in communication, we propose an interactive approach that leverages code comments as a medium for developers and LLMs to establish a shared understanding. Our approach facilitates iterative grounding by interleaving code generation, inline comment generation, and contextualized user feedback through editable comments to align generated code with developer intent. We evaluated our approach on two popular benchmarks and demonstrated that our approach significantly improved multiple state-of-the-art LLMs, e.g., 16.9% Pass@1 improvement for code-davinci-002 on HumanEval. Furthermore, we conducted a user study with 12 participants in comparison to two baselines: (1) interacting with GitHub Copilot, and (2) interacting with a multi-step code generation paradigm called Multi-Turn Program Synthesis. Participants completed the given programming tasks 16.7% faster and with 10.5% improvement in task success rate when using our approach. Both results show that interactively refining code comments enables the collaborative establishment of mutual grounding, leading to more accurate code generation and higher developer confidence.
This program is tentative and subject to change.
Thu 1 MayDisplayed time zone: Eastern Time (US & Canada) change
11:00 - 12:30 | |||
11:00 15mTalk | COCA: Generative Root Cause Analysis for Distributed Systems with Code Knowledge Research Track Yichen LI The Chinese University of Hong Kong, Yulun Wu The Chinese University of Hong Kong, Jinyang Liu Chinese University of Hong Kong, Zhihan Jiang The Chinese University of Hong Kong, Zhuangbin Chen Sun Yat-sen University, Guangba Yu Sun Yat-sen University, Michael Lyu The Chinese University of Hong Kong | ||
11:15 15mTalk | Enhancing Code Generation via Bidirectional Comment-Level Mutual Grounding Research Track | ||
11:30 15mTalk | HumanEvo: An Evolution-aware Benchmark for More Realistic Evaluation of Repository-level Code Generation Research Track Dewu Zheng Sun Yat-sen University, Yanlin Wang Sun Yat-sen University, Ensheng Shi Xi’an Jiaotong University, Ruikai Zhang Huawei Cloud Computing Technologies, Yuchi Ma Huawei Cloud Computing Technologies, Hongyu Zhang Chongqing University, Zibin Zheng Sun Yat-sen University | ||
11:45 15mTalk | SEMANTIC CODE FINDER: An Efficient Semantic Search Framework for Large-Scale Codebases SE In Practice (SEIP) daeha ryu Innovation Center, Samsung Electronics, Seokjun Ko Samsung Electronics Co., Eunbi Jang Innovation Center, Samsung Electronics, jinyoung park Innovation Center, Samsung Electronics, myunggwan kim Innovation Center, Samsung Electronics, changseo park Innovation Center, Samsung Electronics | ||
12:00 15mTalk | Time to Retrain? Detecting Concept Drifts in Machine Learning Systems SE In Practice (SEIP) Tri Minh-Triet Pham Concordia University, Karthikeyan Premkumar Ericsson, Mohamed Naili Ericsson, Jinqiu Yang Concordia University | ||
12:15 15mTalk | UML Sequence Diagram Generation: A Multi-Model, Multi-Domain Evaluation SE In Practice (SEIP) |