µPRL: a Mutation Testing Pipeline for Deep Reinforcement Learning based on Real FaultsSE for AI


Reinforcement Learning (RL) is increasingly adopted to train agents that can deal with complex sequential tasks, such as driving an autonomous vehicle or controlling a complex environment. Correspondingly, novel approaches are needed to ensure that RL agents have been tested adequately before going to production. Among them, mutation testing is quite promising, especially under the assumption that the injected faults (mutations) mimic the real ones.
In this paper, we first describe a taxonomy of real RL faults obtained by repository mining. Then, we present the mutation operators derived from such real faults and implemented in the tool µPRL. Finally, we discuss the experimental results, which show that µPRL is extremely effective at discriminating strong from weak test generators, hence providing useful feedback to developers about the adequacy of the test scenarios generated and executed so far.
Fri 2 MayDisplayed time zone: Eastern Time (US & Canada) change
11:00 - 12:30 | SE for AI with Quality 1Research Track at 215 Chair(s): Chris Poskitt Singapore Management University | ||
11:00 15mTalk | A Tale of Two DL Cities: When Library Tests Meet CompilerSE for AI Research Track Qingchao Shen Tianjin University, Yongqiang Tian , Haoyang Ma Hong Kong University of Science and Technology, Junjie Chen Tianjin University, Lili Huang College of Intelligence and Computing, Tianjin University, Ruifeng Fu Tianjin University, Shing-Chi Cheung Hong Kong University of Science and Technology, Zan Wang Tianjin University | ||
11:15 15mTalk | Iterative Generation of Adversarial Example for Deep Code ModelsSE for AIAward Winner Research Track | ||
11:30 15mTalk | On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning ImplementationsSE for AI Research Track Rajdeep Singh Hundal National University of Singapore, Yan Xiao Sun Yat-sen University, Xiaochun Cao Sun Yat-Sen University, Jin Song Dong National University of Singapore, Manuel Rigger National University of Singapore Pre-print File Attached | ||
11:45 15mTalk | µPRL: a Mutation Testing Pipeline for Deep Reinforcement Learning based on Real FaultsSE for AI Research Track Deepak-George Thomas Tulane University, Matteo Biagiola Università della Svizzera italiana, Nargiz Humbatova Università della Svizzera italiana, Mohammad Wardat Oakland University, USA, Gunel Jahangirova King's College London, Hridesh Rajan Tulane University, Paolo Tonella USI Lugano Pre-print | ||
12:00 15mTalk | Testing and Understanding Deviation Behaviors in FHE-hardened Machine Learning ModelsSE for AI Research Track Yiteng Peng Hong Kong University of Science and Technology, Daoyuan Wu Hong Kong University of Science and Technology, Zhibo Liu Hong Kong University of Science and Technology, Dongwei Xiao Hong Kong University of Science and Technology, Zhenlan Ji The Hong Kong University of Science and Technology, Juergen Rahmel HSBC, Shuai Wang Hong Kong University of Science and Technology | ||
12:15 15mTalk | TraceFL: Interpretability-Driven Debugging in Federated Learning via Neuron ProvenanceSE for AI Research Track Pre-print |