This program is tentative and subject to change.
The task of content-type detection—which entails identifying the data encoded in an arbitrary byte sequence—is critical for operating systems, development, reverse engineering environments, and a variety of security applications. In this paper, we introduce Magika, a novel AI-powered content-type detection tool. Under the hood, Magika employs a deep learning model that can execute on a single CPU with just 1MB of memory to store the model’s weights. We show that Magika achieves an average F1 score of 99% across over a hundred content types and a test set of more than 1M files, outperforming all existing content-type detection tools today. In order to foster adoption and improvements, we open source Magika under an Apache 2 license on GitHub and make our model and training pipeline publicly available. Our tool has already seen adoption by a major email provider for attachment scanning, and it has been integrated with VirusTotal to aid malware analysis.
This program is tentative and subject to change.
Fri 2 MayDisplayed time zone: Eastern Time (US & Canada) change
14:00 - 15:30 | |||
14:00 15mTalk | Repository-Level Graph Representation Learning for Enhanced Security Patch Detection Research Track Xin-Cheng Wen Harbin Institute of Technology, Zirui Lin Harbin Institute of Technology, Shenzhen, Cuiyun Gao Harbin Institute of Technology, Hongyu Zhang Chongqing University, Yong Wang Anhui Polytechnic University, Qing Liao Harbin Institute of Technology | ||
14:15 15mTalk | FAMOS: Fault diagnosis for Microservice Systems through Effective Multi-modal Data Fusion Research Track Chiming Duan Peking University, Yong Yang Peking University, Tong Jia Institute for Artificial Intelligence, Peking University, Beijing, China, Guiyang Liu Alibaba, Jinbu Liu Alibaba, Huxing Zhang Alibaba Group, Qi Zhou Alibaba, Ying Li School of Software and Microelectronics, Peking University, Beijing, China, Gang Huang Peking University | ||
14:30 15mTalk | Leveraging Large Language Models to Detect npm Malicious Packages Research Track Nusrat Zahan North Carolina State University, Philipp Burckhardt Socket, Inc, Mikola Lysenko Socket, Inc, Feross Aboukhadijeh Socket, Inc, Laurie Williams North Carolina State University | ||
14:45 15mTalk | Magika: AI-Powered Content-Type Detection Research Track Yanick Fratantonio Google, Luca Invernizzi Google, Loua Farah Google, Kurt Thomas Google, Marina Zhang Google, Ange Albertini Google, Francois Galilee Google, Giancarlo Metitieri Google, Julien Cretin Google, Alex Petit-Bianco Google, David Tao Google, Elie Bursztein Google | ||
15:00 15mTalk | Closing the Gap: A User Study on the Real-world Usefulness of AI-powered Vulnerability Detection & Repair in the IDE Research Track Benjamin Steenhoek Microsoft, Siva Sivaraman Microsoft, Renata Saldivar Gonzalez Microsoft, Yevhen Mohylevskyy Microsoft, Roshanak Zilouchian Moghaddam Microsoft, Wei Le Iowa State University | ||
15:15 15mTalk | Show Me Your Code! Kill Code Poisoning: A Lightweight Method Based on Code Naturalness Research Track Weisong Sun Nanjing University, Yuchen Chen Nanjing University, Mengzhe Yuan Nanjing University, Chunrong Fang Nanjing University, Zhenpeng Chen Nanyang Technological University, Chong Wang Nanyang Technological University, Yang Liu Nanyang Technological University, Baowen Xu State Key Laboratory for Novel Software Technology, Nanjing University, Zhenyu Chen Nanjing University Pre-print |