What Guides Our Choices? Modeling Developers' Trust and Behavioral Intentions Towards GenAI
This program is tentative and subject to change.
Generative AI (genAI) tools, such as ChatGPT or Copilot, are advertised to improve developer productivity and are being integrated into software development. However, misaligned trust, skepticism, and usability concerns can impede the adoption of such tools. Research also indicates that AI can be exclusionary, failing to support diverse users adequately. One such aspect of diversity is cognitive diversity—variations in users’ cognitive styles—that leads to divergence in perspectives and interaction styles. When an individual’s cognitive style is unsupported, it creates barriers to technology adoption. Therefore, to understand how to effectively integrate genAI tools into software development, it is first important to model what factors affect developers’ trust and intentions to adopt genAI tools in practice?
We developed a theoretical model to (1) identify factors that influence developers’ trust in genAI tools and (2) examine the relationship between developers’ trust, cognitive styles, and their intentions to use these tools. We surveyed software developers (N=238) at two major global tech organizations and employed Partial Least Squares-Structural Equation Modeling (PLS-SEM) to evaluate our model. Our findings reveal that genAI’s system/output quality, functional value, and goal maintenance significantly influence developers’ trust in these tools. Furthermore, developers’ trust and cognitive styles influence their intentions to use these tools. We offer practical suggestions for designing genAI tools for effective use and inclusive user experience.
This program is tentative and subject to change.
Thu 1 MayDisplayed time zone: Eastern Time (US & Canada) change
14:00 - 15:30 | |||
14:00 15mTalk | Between Lines of Code: Unraveling the Distinct Patterns of Machine and Human Programmers Research Track Yuling Shi Shanghai Jiao Tong University, Hongyu Zhang Chongqing University, Chengcheng Wan East China Normal University, Xiaodong Gu Shanghai Jiao Tong University | ||
14:15 15mTalk | Deep Learning-based Code Reviews: A Paradigm Shift or a Double-Edged Sword? Research Track Rosalia Tufano Università della Svizzera Italiana, Alberto Martin-Lopez Software Institute - USI, Lugano, Ahmad Tayeb , Ozren Dabic Software Institute, Università della Svizzera italiana (USI), Switzerland, Sonia Haiduc , Gabriele Bavota Software Institute @ Università della Svizzera Italiana | ||
14:30 15mTalk | An Exploratory Study of ML Sketches and Visual Code Assistants Research Track Luis F. Gomes Carnegie Mellon University, Vincent J. Hellendoorn Carnegie Mellon University, Jonathan Aldrich Carnegie Mellon University, Rui Abreu INESC-ID; University of Porto | ||
14:45 15mTalk | LiCoEval: Evaluating LLMs on License Compliance in Code Generation Research Track Weiwei Xu Peking University, Kai Gao Peking University, Hao He Carnegie Mellon University, Minghui Zhou Peking University Pre-print | ||
15:00 15mTalk | Trust Dynamics in AI-Assisted Development: Definitions, Factors, and Implications Research Track Sadra Sabouri University of Southern California, Philipp Eibl University of Southern California, Xinyi Zhou University of Southern California, Morteza Ziyadi Amazon AGI, Nenad Medvidović University of Southern California, Lars Lindemann University of Southern California, Souti Chattopadhyay University of Southern California Pre-print | ||
15:15 15mTalk | What Guides Our Choices? Modeling Developers' Trust and Behavioral Intentions Towards GenAI Research Track Rudrajit Choudhuri Oregon State University, Bianca Trinkenreich Colorado State University, Rahul Pandita GitHub, Inc., Eirini Kalliamvakou GitHub, Igor Steinmacher Northern Arizona University, Marco Gerosa Northern Arizona University, Christopher Sanchez Oregon State University, Anita Sarma Oregon State University Pre-print |