TCSE logo 
 Sigsoft logo
Sustainability badge
Wed 30 Apr 2025 17:15 - 17:30 at 213 - AI for Program Comprehension 1 Chair(s): Yintong Huo

Software-intensive systems often produce console logs for troubleshooting purpose. Log parsing, which aims at parsing a log message into a specific log template, typically serves as the first step toward automated log analytics. To better comprehend semantic information of log messages, many semantic-based log parsers have been proposed. These log parsers fine-tune a small pretrained language model (PLM) such as RoBERTa on a few labelled log samples. With the increasing popularity of large language models (LLMs), some recent studies also propose to leverage LLMs such as ChatGPT through in-context learning for automated log parsing, and obtain better results than previous semantic-based log parsers with small PLMs. In this paper, we show that semantic-based log parsers with small PLMs can actually achieve better or comparable performance to state-of-the-art LLM-based log parsing models while being more efficient and cost-effective. We propose UNLEASH, a novel semantic-based log parsing approach, which incorporates three enhancement methods to boost the performance of PLMs for log parsing, including (1) an entropy-based ranking method to select the most informative log samples; (2) a contrastive learning method to enhance the fine-tuning process; and (3) an inference optimization method to improve the log parsing performance. We evaluate UNLEASH on a set of large log datasets and the experimental results show that UNLEASH is effective and efficient, when compared to state-of-the-art log parsers.

Wed 30 Apr

Displayed time zone: Eastern Time (US & Canada) change

16:00 - 17:30
AI for Program Comprehension 1Research Track at 213
Chair(s): Yintong Huo Singapore Management University, Singapore
16:00
15m
Talk
ADAMAS: Adaptive Domain-Aware Performance Anomaly Detection in Cloud Service Systems
Research Track
Wenwei Gu The Chinese University of Hong Kong, Jiazhen Gu Chinese University of Hong Kong, Jinyang Liu Chinese University of Hong Kong, Zhuangbin Chen Sun Yat-sen University, Jianping Zhang The Chinese University of Hong Kong, Jinxi Kuang The Chinese University of Hong Kong, Cong Feng Huawei Cloud Computing Technology, Yongqiang Yang Huawei Cloud Computing Technology, Michael Lyu The Chinese University of Hong Kong
16:15
15m
Talk
LibreLog: Accurate and Efficient Unsupervised Log Parsing Using Open-Source Large Language Models
Research Track
Zeyang Ma Concordia University, Dong Jae Kim DePaul University, Tse-Hsun (Peter) Chen Concordia University
16:30
15m
Talk
Model Editing for LLMs4Code: How Far are We?
Research Track
Xiaopeng Li National University of Defense Technology, Shangwen Wang National University of Defense Technology, Shasha Li National University of Defense Technology, Jun Ma National University of Defense Technology, Jie Yu National University of Defense Technology, Xiaodong Liu National University of Defense Technology, Jing Wang National University of Defense Technology, Bin Ji National University of Defense Technology, Weimin Zhang National University of Defense Technology
Pre-print
16:45
15m
Talk
Software Model Evolution with Large Language Models: Experiments on Simulated, Public, and Industrial Datasets
Research Track
Christof Tinnes Saarland University, Alisa Carla Welter Saarland University, Sven Apel Saarland University
Pre-print
17:00
15m
Talk
SpecRover: Code Intent Extraction via LLMs
Research Track
Haifeng Ruan National University of Singapore, Yuntong Zhang National University of Singapore, Abhik Roychoudhury National University of Singapore
17:15
15m
Talk
Unleashing the True Potential of Semantic-based Log Parsing with Pre-trained Language ModelsArtifact-FunctionalArtifact-AvailableArtifact-Reusable
Research Track
Van-Hoang Le The University of Newcastle, Yi Xiao , Hongyu Zhang Chongqing University
:
:
:
: