Time to Retrain? Detecting Concept Drifts in Machine Learning Systems
This program is tentative and subject to change.
With the boom of machine learning (ML) tech- niques, software practitioners build ML systems to process the massive volume of streaming data for diverse software engineering tasks such as failure prediction in AIOps. Trained using historical data, such ML models encounter performance degradation caused by concept drift, i.e., data and inter-relationship (concept) changes between training and production. It is essential to use concept rift detection to monitor the deployed ML models and re-train the ML models when needed. In this work, we explore applying state-of-the-art (SOTA) concept drift detection techniques on synthetic and real-world datasets in an industrial setting. Such an industrial setting requires minimal manual effort in labeling and maximal generality in ML model architecture. We find that current SOTA semi-supervised methods not only require significant labeling effort but also only work for certain types of ML models. To overcome such limitations, we propose a novel model-agnostic technique (CDSeer) for detecting concept drift. Our evaluation shows that CDSeer has better precision and recall compared to the state-of-the-art while requiring significantly less manual labeling. We demonstrate the effectiveness of CDSeer at concept drift detection by evaluating it on eight datasets from different domains and use cases. Results from internal deployment of CDSeer on an industrial proprietary dataset show a 57.1% improvement in precision while using 99% fewer labels compared to the SOTA concept drift detection method. The performance is also comparable to the supervised concept drift detection method, which requires 100% of the data to be labeled. The improved performance and ease of adoption of CDSeer are valuable in making ML systems more reliable.
This program is tentative and subject to change.
Thu 1 MayDisplayed time zone: Eastern Time (US & Canada) change
11:00 - 12:30 | |||
11:00 15mTalk | COCA: Generative Root Cause Analysis for Distributed Systems with Code Knowledge Research Track Yichen LI The Chinese University of Hong Kong, Yulun Wu The Chinese University of Hong Kong, Jinyang Liu Chinese University of Hong Kong, Zhihan Jiang The Chinese University of Hong Kong, Zhuangbin Chen Sun Yat-sen University, Guangba Yu Sun Yat-sen University, Michael Lyu The Chinese University of Hong Kong | ||
11:15 15mTalk | Enhancing Code Generation via Bidirectional Comment-Level Mutual Grounding Research Track | ||
11:30 15mTalk | HumanEvo: An Evolution-aware Benchmark for More Realistic Evaluation of Repository-level Code Generation Research Track Dewu Zheng Sun Yat-sen University, Yanlin Wang Sun Yat-sen University, Ensheng Shi Xi’an Jiaotong University, Ruikai Zhang Huawei Cloud Computing Technologies, Yuchi Ma Huawei Cloud Computing Technologies, Hongyu Zhang Chongqing University, Zibin Zheng Sun Yat-sen University | ||
11:45 15mTalk | SEMANTIC CODE FINDER: An Efficient Semantic Search Framework for Large-Scale Codebases SE In Practice (SEIP) daeha ryu Innovation Center, Samsung Electronics, Seokjun Ko Samsung Electronics Co., Eunbi Jang Innovation Center, Samsung Electronics, jinyoung park Innovation Center, Samsung Electronics, myunggwan kim Innovation Center, Samsung Electronics, changseo park Innovation Center, Samsung Electronics | ||
12:00 15mTalk | Time to Retrain? Detecting Concept Drifts in Machine Learning Systems SE In Practice (SEIP) Tri Minh-Triet Pham Concordia University, Karthikeyan Premkumar Ericsson, Mohamed Naili Ericsson, Jinqiu Yang Concordia University | ||
12:15 15mTalk | UML Sequence Diagram Generation: A Multi-Model, Multi-Domain Evaluation SE In Practice (SEIP) |