Improving Code Performance Using LLMs in Zero-Shot: RAPGen
Performance bugs are non-functional bugs that can even manifest in well-tested commercial products. Fixing these performance bugs is an important yet challenging problem. In this work, we address this challenge and present a new approach called Retrieval-Augmented Prompt Generation (RAPGen). Given a code snippet with a performance issue, RAPGen first retrieves a prompt instruction from a pre-constructed knowledge-base of previous performance bug fixes and then generates a prompt using the retrieved instruction. It then uses this prompt on a Large Language Model (such as Codex) in zero-shot to generate a fix. We compare our approach with the various prompt variations and state of the art methods in the task of performance bug fixing. Our empirical evaluation shows that RAPGen can generate performance improvement suggestions equivalent or better than a developer in ~60% of the cases, getting ~42% of them verbatim, in an expert-verified dataset of past performance changes made by C# developers. Furthermore, we conduct an in-the-wild evaluation to verify the model’s effectiveness in practice by suggesting fixes to developers in a large software company. So far, we have shared fixes on 10 codebases that represent production services running in the cloud and 7 of them have been accepted by the developers.