Efficient Management of Containers for Software Defined Vehicles
This program is tentative and subject to change.
Containerization technology, such as Docker, is gaining in popularity in newly established software-defined vehicle architectures (SDVA). However, executing those containers can quickly become computationally expensive in constrained environments, given the limited CPU, memory, and energy resources in the Electric Control Units (ECU) of SDVA. Consequently, the efficient management of these containers is crucial for enabling the on-demand usage of the applications in the vehicle based on the available resources while considering several constraints and priorities, including failure tolerance, security, safety, and comfort. In this paper, we propose a dynamic software container management approach for constrained environments such as embedded devices/ECUs in SDVA within smart cars. To address the conflicting objectives and constraints within the vehicle, we design a novel search-based approach based on multi-objective optimization. This approach facilitates the allocation, movement, or suspension of containers between ECUs in the cluster. Collaborating with our industry partner, Ford Motor Company, we evaluate our approach using different real-world software-defined scenarios. These scenarios involve using heterogeneous clusters of ECU devices in vehicles based on real-world software containers and use-case studies from the automotive industry. The experimental results demonstrate that our scheduler outperforms existing scheduling algorithms, including the default Docker scheduler -Spread- commonly used in automotive applications. Our proposed scheduler exhibits superior performance in terms of energy and resource cost efficiency. Specifically, it achieves a 35% reduction in energy consumption in power-saving mode compared to the scheduler employed by Ford Motor Company. Additionally, our scheduler effectively distributes workload among the ECUs in the cluster, minimizing resource usage, and dynamically adjusts to the real-time requirements and constraints of the car environment. This work will serve as a fundamental building block in the automotive industry to efficiently manage software containers in smart vehicles considering constraints and priorities in the real world.
This program is tentative and subject to change.
Wed 30 AprDisplayed time zone: Eastern Time (US & Canada) change
16:00 - 17:30 | |||
16:00 15mTalk | Enhancing Fault Localization in Industrial Software Systems via Contrastive Learning Research Track Chun Li Nanjing University, Hui Li Samsung Electronics (China) R&D Centre, Zhong Li , Minxue Pan Nanjing University, Xuandong Li Nanjing University | ||
16:15 15mTalk | On the Understandability of MLOps System Architectures Journal-first Papers Link to publication DOI | ||
16:30 15mTalk | Bridging the Language Gap: An Empirical Study of Bindings for Open Source Machine Learning Libraries Across Software Package Ecosystems Journal-first Papers | ||
16:45 15mTalk | Understanding Code Understandability Improvements in Code Reviews Journal-first Papers Delano Hélio Oliveira , Reydne Bruno dos Santos UFPE, Benedito Fernando Albuquerque de Oliveira Federal University of Pernambuco, Martin Monperrus KTH Royal Institute of Technology, Fernando Castor University of Twente, Fernanda Madeiral Vrije Universiteit Amsterdam | ||
17:00 15mTalk | Automatic Commit Message Generation: A Critical Review and Directions for Future Work Journal-first Papers Yuxia Zhang Beijing Institute of Technology, Zhiqing Qiu Beijing Institute of Technology, Klaas-Jan Stol Lero; University College Cork; SINTEF Digital , Wenhui Zhu Beijing Institute of Technology, Jiaxin Zhu Institute of Software at Chinese Academy of Sciences, Yingchen Tian Tmall Technology Co., Hui Liu Beijing Institute of Technology | ||
17:15 7mTalk | Efficient Management of Containers for Software Defined Vehicles Journal-first Papers Anwar Ghammam Oakland University, Rania Khalsi University of Michigan - Flint, Marouane Kessentini University of Michigan - Flint, Foyzul Hassan University of Michigan at Dearborn |