This program is tentative and subject to change.
A code-level backdoor is a hidden access, programmed and concealed within the code of a program. or instance, hard-coded credentials planted in the code of a file server application would enable maliciously logging into all deployed instances of this application. Confirmed software supply-chain attacks have led to the injection of backdoors into popular open-source projects, and backdoors have been discovered in various router firmware. Manual code auditing for backdoors is challenging and existing semi-automated approaches can handle only a limited scope of programs and backdoors, while requiring manual reverse-engineering of the audited (binary) program. raybox fuzzing (automated semi-randomized testing) has grown in popularity due to its success in discovering vulnerabilities and hence stands as a strong candidate for improved backdoor detection. However, current fuzzing knowledge does not offer any means to detect the triggering of a backdoor at runtime.
In this work we introduce ROSA, a novel approach (and tool) which combines a state-of-the-art fuzzer (AFL++) with a new metamorphic test oracle, capable of detecting runtime backdoor triggers. To facilitate the evaluation of ROSA, we have created ROSARUM, the first openly available benchmark for assessing the detection of various backdoors in diverse programs. Experimental evaluation shows that ROSA has a level of robustness, speed and automation similar to classical fuzzing. It finds all 17 authentic or synthetic backdooors from ROSARUM in 1h30 on average. Compared to existing detection tools, it can handle diversity of backdoors and programs and it does not rely on manual reverse-engineering of the fuzzed binary code.
This program is tentative and subject to change.
Fri 2 MayDisplayed time zone: Eastern Time (US & Canada) change
16:00 - 17:30 | |||
16:00 15mTalk | ROSA: Finding Backdoors with Fuzzing Research Track Dimitri Kokkonis Université Paris-Saclay, CEA, List, Michaël Marcozzi Université Paris-Saclay, CEA, List, Emilien Decoux Université Paris-Saclay, CEA List, Stefano Zacchiroli Télécom Paris, Polytechnic Institute of Paris Pre-print Media Attached | ||
16:15 15mTalk | Analyzing the Feasibility of Adopting Google's Nonce-Based CSP Solutions on Websites Research Track Mengxia Ren Colorado School of Mines, Anhao Xiang Colorado School of Mines, Chuan Yue Colorado School of Mines | ||
16:30 15mTalk | Early Detection of Performance Regressions by Bridging Local Performance Data and Architectural ModelsAward Winner Research Track Lizhi Liao Memorial University of Newfoundland, Simon Eismann University of Würzburg, Heng Li Polytechnique Montréal, Cor-Paul Bezemer University of Alberta, Diego Costa Concordia University, Canada, André van Hoorn University of Hamburg, Germany, Weiyi Shang University of Waterloo | ||
16:45 15mTalk | Revisiting the Performance of Deep Learning-Based Vulnerability Detection on Realistic Datasets Journal-first Papers Partha Chakraborty University of Waterloo, Krishna Kanth Arumugam University of Waterloo, Mahmoud Alfadel University of Calgary, Mei Nagappan University of Waterloo, Shane McIntosh University of Waterloo | ||
17:00 15mTalk | Sunflower: Enhancing Linux Kernel Fuzzing via Exploit-Driven Seed Generation SE In Practice (SEIP) Qiang Zhang Hunan University, Yuheng Shen Tsinghua University, Jianzhong Liu Tsinghua University, Yiru Xu Tsinghua University, Heyuan Shi Central South University, Yu Jiang Tsinghua University, Wanli Chang College of Computer Science and Electronic Engineering, Hunan University | ||
17:15 15mTalk | Practical Object-Level Sanitizer With Aggregated Memory Access and Custom Allocator Research Track Xiaolei wang National University of Defense Technology, Ruilin Li National University of Defense Technology, Bin Zhang National University of Defense Technology, Chao Feng National University of Defense Technology, Chaojing Tang National University of Defense Technology |